mycoCLAP, the Database for Characterized Lignocellulose-Active Proteins of Fungal Origin: Resource and Text Mining Curation Support

Kimchi Strasser, Erin McDonnell, Carol Nyaga, Min Wu, Hayda Almeida, Marie-Jean Meurs, Leila Kosseim, Justin Powlowski, Greg Butler, Adrian Tsang

Centre for Structural and Functional Genomics
and
Computer Science and Software Engineering
Concordia University, Montreal, Canada

gregb@cs.concordia.ca

Biocuration 2015 — 26 April 2015
Outline

What! Only 10 minutes!
I hope you spoke with Kimchi at the poster session for details :-) ...
... or read the paper in Database: Biocuration Virtual Issue

mycoCLAP
... is database ... ongoing curation ... now over 800 proteins

mycoSORT — *Breaking news: new and improved*
... for triage of articles

mycoMINE
... text mining relevant articles
mycoCLAP Curation

Searchable online database of fungal enzymes

Industrial processes 🍇рождання 🍦сахар 🍻пиво 🍷вино

Manual curation since 2011

Extensive review of scientific publications

804 enzymes from 226 fungal species | one+ reference paper by entry

PubMed 📘 “fung*” → over 250,000 documents

https://mycoclap.fungalgenomics.ca
Literature Triage

Manual screening: few documents actually kept

Demanding, time consuming and error-prone

Not guaranteed to be exhaustive

Severe bottleneck in manual curation workflow
Supervised Learning Workflow for mycoSORT Triage

Training

Labeled PubMed Abstracts → Feature extraction → Machine Learning Algorithm

Testing

Unlabeled PubMed Abstracts → Feature extraction → Classifier model → Predictions
Dataset Balance

4 biocurators with inter-annotator agreement > 80%

Instances labeled as **non-relevant**: 6,834 (90.12%)

Negative examples → Majority class

Instances labeled as **relevant**: 749 (9.88%)

Positive examples → Minority class

Underlying distribution → real scenario of triage task

Imbalance affects decision boundary
Baseline (Naive Bayes) vs. mycoSORT Performance

mycoSORT

- Classifier is Logistic Model Trees
- Under Sampling Factor is 40%
- Feature selection strategy is Odds Ratio

<table>
<thead>
<tr>
<th>Scores</th>
<th>Baseline</th>
<th>mycoSORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.307</td>
<td>0.368 (+19.8%)</td>
</tr>
<tr>
<td>Recall</td>
<td>0.720</td>
<td>0.860 (+19.4%)</td>
</tr>
<tr>
<td>F-measure</td>
<td>0.430</td>
<td>0.515 (+19.7%)</td>
</tr>
<tr>
<td>F-2</td>
<td>0.570</td>
<td>0.680 (+19.3%)</td>
</tr>
</tbody>
</table>

In practice, ... for 1000 abstracts ... where 900 irrelevant
Baseline triage keeps 72 + 162 = 234 and eliminates 738 + 28
mycoSORT triage keeps 86 + 147 = 233 and eliminates 753 + 14
Thank You!

Questions Please?